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Abstract
We study experimentally the dynamical and decay properties of the stimulated
nutation echo (SNE) in a two-level spin system, the signal of which allows
the observation timescale of the driven coherence relaxation to be extended.
This signal appears in the transient response of the system to the second
pulse at time τ1 from its start and coinciding with the duration of the first
pulse. The information about the first pulse duration is imprinted into the
population difference of the inhomogeneously broadened ensemble of the two-
level absorbers. The decay of the SNE signal has two contributions. One
originates from the population decay during the time τ between the two pulses.
Another is caused by the coherence loss during the excitation by the first pulse
and the reading time of the second pulse. Experimental results on the decay
properties induced by these mechanisms are presented for the first time. We
investigate the dependence of these decay rates on the pulse intensity and
we examine its relationship with the anomalous (non-Bloch) decay of other
coherent transients in solids.

1. Introduction

Coherence decay is a crucial point in atom–field interaction. It determines the accuracy limit
of the atom state manipulation and preparation in a particular coherent or pure state by the
sequence of two or more coherent pulses of resonant radiation. Decoherence takes place both
between pulses when atom evolves freely (free decoherence) and during the excitation (driven
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decoherence). In solids, an additional (reversible) contribution to dephasing originates from
the inhomogeneous spread of the resonance frequencies. While free irreversible decoherence
can be studied quite well by two-pulse echo on a long timescale, the measurement of the driven
decoherence is rather complicated. For example, consider an ensemble of two-level atoms with
an inhomogeneously broadened transition. One can find the actual T2 (homogeneous dephasing
time) during the excitation by measuring the free induction decay (FID) rate. In fact, even if FID
is the signal emitted by the system after abruptly switching off the radiation pulse, it images the
spectral properties of the stationary state reached during the pulse. In the high power limit, FID
is expected to decay at the rate ∼χ

√
T1/T2, where T1 is the relaxation time of the population

difference and χ is the driving field Rabi frequency. So, one can infer the driven T2 from FID
measurements if T1 and χ are known. In solids at low temperature, narrow lines (for example,
the R1-line in ruby and the 3H4–1D2 transition in Pr3+:LaF3) have appreciably long decay
times (≈ms) for the excited state, limited mainly by spontaneous emission. The coherence
decay is mostly caused by magnetic dipole interaction and hence the irreversible dephasing
time T2 (scaled in tens of microseconds) is much shorter than T1. Anomalous behaviour of the
driven decoherence rate was found in FID [1–6] and hole burning [7] experiments: the driven
T2 deduced from FID or from saturated hole width was found to be much longer than the free
decoherence time and to increase on increasing the driving field amplitude up to the vacuum
limit ∼2T1.

The results for the optical domain [1, 3, 6, 7] are similar to those obtained for electron
spin resonance (ESR) systems [2, 4, 5] and one can assume that both systems (optical and spin
two-level systems) are nearly identical in this respect. Both are affected by magnetic dipole
interactions and both have high inhomogeneous broadening. There are some advantages in
considering ESR systems when studying experimentally the decay of coherent regimes. As
T1 and T2 are longer than in optical systems, simpler electronics is required for exploring the
decay timescale. Moreover, tunable sources of microwave radiation with very narrow spectral
widths (<1 Hz) are available. So, in these systems, the direct measurement of the driven T2 was
possible also using another coherent regime, the transient nutations (TN). This is the transient
regime of system when the power pulse is switched on and the emitted signal is expected to
decay as VT N ∝ J0(χ t) exp(−t/2T2). Our TN experiments revealed that the driven dephasing
time T2, measured during the TN regime, is much shorter than the free decoherence time and
decreases on increasing the driving field amplitude [8, 9].

The evident conflict between the power dependence of the driven decoherence time T2,
measured by FID and by TN experiments, was ascribed to the dipolar reservoir squeezing [9, 10]
resulting in two different driven decoherences, i.e. in-phase dephasing T2u and out-of-phase
dephasing T2v . In this regard, it has been shown that field-induced modifications of the dipolar
interaction produce essentially the same effect as the driving field noise [10–12]. The driven
dipolar reservoir contributes also to the T1 relaxation, which becomes dependent on the resonant
detuning. The interplay between driven T2u , T2v and T1 relaxation times explains FID and TN
behaviour apparently contradicting with each other and with the predictions of the conventional
Bloch equations.

Besides our theory, another approach was proposed in [13–15] explaining the anomalous
power dependence of the decay rates of coherent transients by different dependences of T2u

and T2v on the driving field amplitude and constant T1. The in-phase decoherence rate, T −1
2u ,

reduces to the vacuum limit, (2T1)
−1, and the out-of-phase one, T −1

2v , rises linearly with the
driving field amplitude. T2u , appearing in the expression for the hole width, determines the FID
rate, whereas T2v is just the time constant in the exponential factor of the TN decay. Theories,
presented in [9–15], differ qualitatively from theoretical treatments [16–24], which have been
proposed to explain only the anomalous FID rate (the list is not exhaustive).
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It should be remembered that the oscillating and fast decaying part of the TN, described
by the Bessel function J0(χ t), originates from the destructive interference of the Rabi
oscillations, which are different for resonant absorbers having different resonant frequencies.
This reversible contribution to the TN decay limits the measurement accuracy of the driven
T2, but it is intrinsic to solid systems. Therefore, for studying the driven decoherence it is
important to look for another transient regime, whose decay is unaffected by the reversible
contribution caused by the inhomogeneous broadening. The appropriate candidates for this
purpose are the driven transient echo phenomena.

In this paper we use the stimulated nutation echo (SNE) [25–31] to extend the timescale
of the driven T2v-dephasing measurement. To our knowledge, this is the first application of
SNE to the study of driven decoherence. Until now, it has been used only to study T1 and
spectral diffusion (SD) processes [27–31].

SNE takes place in the following conditions. When a system of two-level centres (atoms
or spins) is resonantly driven by a sequence of two pulses, lasting τ1 and τ2 and separated by the
interpulse distance τ , the response of the system to the second pulse (t > τ1 + τ ) includes both
an initial Rabi-oscillating component and an oscillatory echo, centred at t = 2τ1 + τ , namely
at a time distance τ1 from the onset of the second pulse. This echo is an example of forced
echo (see [32] for a recent review), in the sense that it occurs during the second refocusing
pulse and is emitted by a strongly driven rather than by a freely evolving system.

The nutation echo effect originates from the fact that first pulse burns a sequence of holes in
the inhomogeneous spectrum. For T2 ∼ τ1 � T1, the hole burning process is strongly affected
by the decoherence but not by the T1 relaxation. If the distance τ between the two pulses is
shorter than T1, at the onset of the second pulse the system keeps a memory of its time evolution
during the first (preparative) pulse. As a consequence, it exhibits a sort of revival of Rabi
nutations during the second pulse, which occurs when the usual TN signal has nearly vanished,
so that two coherent regimes can be isolated from each other. Even if the nutation echo signal
looks like the revival of initially strong but fast decaying TN oscillations induced by the second
pulse, actually it originates from the spectral pattern established during the first pulse.

It is worth noting that the phase coherence and the phase shift between the two exciting
pulses are not relevant in the echo effect considered here. In this respect, it is different from
the spin and optical rotary echo [33, 34], from nutation time-reversal experiments [35] and
from coherent echoes excited by field gradient sequences in NMR imaging [36]. Moreover,
the nutation echo is investigated here in ESR systems in such conditions that it originates only
from the spectral pattern of the population difference stored in the inhomogeneous spectrum
at the end of the first pulse. Following [30, 31], we refer to it as SNE, in analogy to the
three-pulse-stimulated echo that is produced from a hole pattern burnt into an inhomogeneous
line. At variance with previous observations of SNE in ESR systems, obtained either in spin
systems generated by pulsed light irradiation [27], or by indirect optical detection [28], or by
applying Zeeman field pulses [29], in our experiments the SNE is directly excited by pulses
of resonant radiation. This configuration yields a high value of the signal-to-noise ratio.

We report experimental results on the decay properties of the SNE signal. The SNE
intensity decays both when the interpulse distance τ is increased and on lengthening the first
pulse duration τ1. The former decay is caused by the thermalization of the population difference
pattern. According to the conventional Bloch equations, this decay should proceed at the rate
T −1

1 . However, the results reported here show that this decay is governed by the SD process,
which is sensitive to the spectral pattern established by the first pulse. On the other hand, the
decay of the SNE on increasing the duration τ1 of the first (exciting) pulse is due to the driven
coherence loss mechanisms. We find that also this decay rate depends on the driving field
intensity and this aspect is our major point of interest.
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The paper is organized as follows. In section 2 we briefly outline the theory of the SNE by
Szabo and Shakhmuratov [30, 31] for calculating the intensity and the shape of the SNE and
its decay properties, tailoring it to the specific system considered here and hypothesizing the
phenomenological Bloch times T1 and T2 (T2u, T2v). In section 3 we report the experimental
results obtained in our ESR system. In section 4 we compare our results with the solutions of
the Bloch equations and with the anomalous decay of the TN experimentally observed in the
same system.

2. Theory

In this section we give a brief and simplified sketch of the theory of the SNE presented in [30, 31]
and we take into account the relaxation phenomena, to make clear the discussion of the results
and to address the question which decoherence time, T2u or T2v , determines the SNE decay.

We consider an inhomogeneous system of two-level particles whose frequencies ω are
spread around the mean frequency ω0 according to a symmetric distribution f (ω − ω0).
The resonance line is the convolution of the inhomogeneous distribution with much narrower
homogeneous lines (hereafter referred to as spin packets). The system is excited by a sequence
of two pulses of resonant radiation tuned at the line centre ω0, lasting τ1 and τ2, and separated
by τ .

The time evolution of the generic spin packet, characterized by its detuning � = ω − ω0

from the line centre and from the radiation, is described by the Bloch-vector components
u(�, t), v(�, t) and w(�, t), which are combinations of the elements of the particle density
matrix ρ: u+iv = 2ρ12 exp(−iω0 t), w = ρ22−ρ11. The transient response of the whole system
is the superposition of the responses of the individual packets weighted by the distribution
f (�). For the resonant excitation considered here, the only non-vanishing coherence of the
system is

〈v(t)〉 = V (t) =
∫ +∞

−∞
v(�, t) f (�) d� (1)

and we limit ourselves to calculating v(�, t).
The time evolution of the generic packet is governed by the Bloch equations:

u̇ + �v + u/T2u = 0, (2)

v̇ − �u − χw + v/T2v = 0, (3)

ẇ + χv + (w − w0)/T1 = 0, (4)

where w0 is the equilibrium population difference. T1, T2u and T2v are the decay times of
the population difference w and of the coherences u and v, with T1 	 T2u, T2v . The Rabi
frequency χ is defined by the transition matrix element and the amplitude of the driving field.
For T2u = T2v = T2, equations (2)–(4) coincide with the conventional Bloch equations, whose
transient solutions were derived by Torrey [37]. We consider here modified Torrey solutions
to cover the case T2u 
= T2v. The solution simplifies if we assume the strong field limit
(χT2 	 1) and that the first pulse duration τ1 is much shorter than T1, so that only T2u and T2v

affect the time evolution of the system during the pulses. Both conditions are well satisfied in
our experimental situation. During the first (preparative) pulse the generic packet precesses at
the frequency β = √

�2 + χ2 around its effective field. At the end of the pulse, its population
difference is given by:

w(�, τ1)

w0
= α2 exp

(
−α1

τ1

T2u

)
+ α1 exp

(
− τ1

2T2v

− α2τ1

2T2u

)
cos(βτ1) (5)

where α1 = (χ/β)2 and α2 = (�/β)2.
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Figure 1. Spectral pattern of the population difference at the end of the first pulse. The dashed
curve plots the Gaussian inhomogeneous line with standard deviation σ . The full curve plots the
population difference, as calculated from equation (4), with χ/σ = 0.2, τ1/T0 = 2, T2/T0 = 2000.
The dotted curve is the envelope of the hole burnt within the inhomogeneous curve. The inset on
the right side shows the corresponding SNE signal: time t is measured from the beginning of the
second pulse and is given in units of the Rabi period T0. The inset on the left side sketches the
pulse sequence.

The spectral pattern described by equation (5) is the ultimate origin of the echo effect we are
concerned with. A typical result is given in figure 1, as obtained from equation (5), assuming a
Gaussian inhomogeneous line shape with standard deviation σ . As shown, w(�, τ1) is strongly
modulated within a spectral region of width χ around the excitation point (the line centre in
our case). Obviously, the particular pattern depends both on χ and on τ1: on increasing χ this
region broadens and on increasing τ1 the peaks become closer and closer.

After the first pulse (t > τ1), the spins evolve freely during the interpulse distance τ . We
assume that τ is long enough to ensure the complete decay of the coherences u(�, τ1) and
v(�, τ1) induced by the first pulse. As shown in [31], their contribution to the SNE signal
decays as ∝ exp(−χτ). So, provided that τ is much longer than the Rabi period T0 = 2π/χ ,
at t = τ + τ1 (onset of the second pulse) the memory of the nutational regime excited by the
first pulse is stored only in the spectral distribution w(�, τ1), damped by the T1 relaxation:

w(�, τ1 + τ ) = [w(�, τ1) − w0] exp(−τ/T1) + w0,

u(�, τ1 + τ ) = 0; v(�, τ1 + τ ) = 0.
(6)

These equations represent the initial conditions of the system at the onset of the second pulse.
During the second pulse, the v-component of the induced coherence is

v(�, t) =
(

χ

β
sin βt

)
exp

(
− t

2T2v

− α2
t

2T2u

)
w(�, τ1 + τ ), (7)
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as obtained by solving equations (2)–(4) again with the initial conditions in equation (6). Here
t is the time counted from the beginning of the second pulse. By substituting equations (5)
and (6), we get:

v(�, t)

w0
= χ

β
sin(βt) exp

(
− t

2T2v

− α2t

2T2u

){
1 − exp

(
− τ

T1

)
+ α2 exp

(
− τ

T1
− α1τ1

T2u

)}

+
1

2

(
χ

β

)3

exp

[
− τ

T1
−

(
1

2T2v

+
α2

2T2u

)
(τ1 + t)

]

× [sin(β(t − τ1)) + sin(β(t + τ1))]. (8)

The time response of the whole system is finally obtained by inserting equation (8) into
equation (1) to get V (t). We assume that the width of the inhomogeneous distribution is
much higher than χ , so that we can consider the integration in equation (1) as the integration
with the flat function f (�) = f (0). Hereafter, to simplify the calculation we admit α1 = 1
and α2 = 0.

In equation (8), the first term represents the TN induced by the second pulse, originating
from the almost nonperturbed part of the thermal population difference and can be considered
as a supplementary signal, in which we are not interested. Here we are interested in the term
containing sin(β(t − τ1)), which represents the SNE signal Vecho(t), centred at t = τ1. Then

Vecho(t)

w0
= 1

2
f (0) exp

(
−τ1 + t

2T2v

− τ

T1

) ∫ +∞

−∞

(
χ

β

)3

sin(β( t − τ1)) d�. (9)

A typical result of the SNE signal, as calculated using equation (9), is reported in the inset of
figure 1. The signal consists of an oscillatory pattern with many spikes of alternating sign.
The peak values are distributed inside a symmetric bell-shaped envelope centred at t = τ1.
According to the analytical study carried out in [30, 31], the spikes occur at t = τ1 ± ti , where
the sequence ti is given in units of the Rabi period T0 as ti/T0 = 0.17, 0.65, 1.24, 1.74, 2.24,
etc. The amplitudes of the spikes decrease as ti increases. Vecho is exactly zero at t = τ1.

The SNE is well pronounced if the first pulse area θ = χτ1 is at least several π ; otherwise
it is impossible to isolate the echo signal from the TN excited by the second pulse, given by
the first term in equation (8). Varying the time parameters of the exciting sequence, τ1 and τ ,
the amplitudes Vm of the peaks nearest to the centre (t ≈ τ1) are expected to be damped as:

Vm ∝ exp

(
− τ1

T2v

− τ

T1

)
. (10)

SNE is expected to decay on increasing the interpulse distance τ at a rate fixed by the spin
relaxation time T1. On the other hand, the SNE echo is also expected to decay as a function of
τ1 as a single exponential at the rate 1/T2v. In this regard we remark that this expectation is
not conditioned by the approximation used for α1 and α2. In fact, by numerically integrating
equation (8) using the �-dependent expression of α1 and α2, we verified that the only effect
of the approximation is to overestimate the decay rate (by nearly 10%), in the sense that the
actual rate is 1.13/T2 rather than 1/T2 if the relation T2u = T2v = T2 is taken. What is
important for our present concern is that the single exponential nature of the decay and the
χ-independence of the rate are properties of the exact solution of the Bloch equations. This is
the reason why an interest in this coherent regime is so relevant. In fact, the decay of the SNE as
a function of τ1 should manifest the processes of coherence loss in the strongly driven system.
As mentioned in the previous section, in these regimes the decay properties deviate strongly
from those predicted by the Bloch equations. This has been already observed in connection
with the TN regime [8, 9] and a similar effect is expected to occur for the SNE.
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3. Experiments

For the experimental investigation of the SNE in magnetic resonance systems we used the
two-photon (TP) excitation, second-harmonic (SH) detection method, already successfully
employed for several transient regimes [2, 4, 8]. In our experimental apparatus, the spin
system, tuned to the frequency ω0 (ω0/2π = 5.95 GHz) by the external static magnetic field
B0, is excited by an intense microwave radiation at frequency ω = ω0/2, which couples the
spin states by TP transitions. The TP-induced coherences manifest themselves in the build-
up of a transverse magnetization, M⊥(2ω), oscillating at the SH of the driving field. The
response of the spin system is monitored by revealing the radiation emitted by the spin system
at frequency 2ω. Under pulse excitation conditions, the amplitude M⊥ of M⊥(2ω) varies in
time, reproducing the coherent transient regimes of the spin system. At the exact TP tuning,
ω = ω0/2, M⊥ is proportional to the average coherence V (t) (equation (1)) and is the same
as for the usual single-quantum excitation, provided that the appropriate TP-induced Rabi
frequency χ is used [38, 39]. In our experimental set-up χ/2π can be varied from 10 to
250 kHz. We refer to our previous papers [2, 4, 8] for the detailed description of this procedure
and of the related experimental apparatus.

The experiments described below were carried out at T = 4.2 K, using a sample of
glassy SiO2 containing a concentration c ∼ 2.4 × 1017 spin cm−3 of E ′ centres, preliminarily
generated by exposure to gamma rays [40]. E ′ centres have S = 1/2 and are particularly
suitable for this kind of experiment due to their relatively long relaxation times. In our work
conditions, we measured T1 = 1.2 s (by the saturation recovery method) and T2 = 75 µs (by
the spin echo method, which gives the free decoherence time). In the glassy matrix of SiO2,
E ′ centres exhibit a powder-like line shape. For the purposes of the experiments described
below, the central part of their resonance line is well approximated by a Gaussian shape
with σ/2π ∼ 1 MHz. Due to the high value of σ T2 (≈5 × 102), the high-inhomogeneity
approximation, used in deriving equation (9), is well fulfilled in our system.

The spin system, tuned at resonance, is excited by a sequence of two pulses, lasting τ1

and τ2 respectively, separated by a distance τ , both with the same power level. The repetition
frequency is kept low enough (typically 0.5 Hz) to ensure adequate thermal relaxation of the
spin system between successive sequences. The microwave signal emitted by the spin system
and output by the cavity has a time-dependent amplitude M⊥(t), which we detect by a phase
insensitive superheterodyne receiver to get |M⊥(t)|. To improve the signal-to-noise ratio,
|M⊥(t)| is averaged over typically 16 sequences.

During the first pulse, the system undergoes damped Rabi oscillations, which we use for
the accurate measure of χ . A typical response to the second pulse is shown in figure 2, as
detected for χ/2π = 200 kHz, τ1 = 30 µs (τ1 ≈ 6T0) and τ = 400 µs (τ 	 T0, T2). At
the onset of the second pulse, the system undergoes fast-damping Rabi oscillations, followed
by the SNE regime. The SNE signal consists of a bell-enveloped series of peaks, centred
at te = 30 µs (te = τ1) after the onset of the second pulse, in agreement with theoretical
predictions.

In order to explore the ranges of low values of χ and of long values of τ1 and τ , where
the SNE signal is close to the noise level, we often used a sort of homodyne detection. The
microwave signal output by the cavity is first superimposed on a reference signal with the
same frequency, whose amplitude and phase are adjusted to optimize the visibility of SNE
oscillations. The sum signal is then revealed by a conventional superheterodyne detector,
yielding S2(t) = M2

⊥ + R2 + 2M⊥ R, where R is the amplitude of the reference signal. The
result is shown in the inset of figure 2. Usually, R2 	 M2

⊥, so that S2 ≈ R2 + 2M⊥ R consists
of a dc offset and a time-dependent part reproducing the time evolution of M⊥(t), coherently
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Figure 2. Typical SNE signal, as detected after a preparative pulse with χ/2π = 200 kHz and
lasting τ1 = 30 µs. Time t is measured from the onset of the second pulse, 400 µs after the first
one. The same signal is shown in the inset, as detected using the superposition to a reference signal
and described in the text. The arrows point the maximum and the minimum used for evaluating
the SNE amplitude Vm , as described in the text.

amplified by the reference signal. To estimate the SNE amplitude Vm , we measured the
maximum and the minimum signals nearest to the echo centre (indicated by arrows in the inset
of figure 2): S2

max (=M2
⊥ + R2 +2|M⊥|R) and S2

min (=M2
⊥ + R2 −2|M⊥|R) to get Vm ∝ |M⊥| as

[(S2
max − S2

min)/4R]1/2. To use the maximum and the minimum nearest to the echo centre for
measuring the echo amplitude Vm is convenient as they offer the highest amplitude. Whenever
possible, we verified that the decay properties considered below are essentially the same for
any other maximum or minimum, at least in the investigated range of T0 and of τ1.

The detailed timing of the SNE signal is shown in figure 3 where we report the expanded
view of a typical curve of the SNE signal, taken with a Rabi frequency χ/2π = 100 kHz
and τ1 = 55 µs. In the figure the time origin is placed at 55 µs after the onset of the second
pulse (namely, at the expected centre of the SNE signal) and we observe maxima and minima,
symmetrically located around the origin, at times ti where ti/T0 = 0.25, 0.72, 1.23, 1.74
and 2.27 (±0.02, typically) in units of the Rabi period T0. The symmetrical location around
the echo centre was observed for several values of T0 and of τ1, within the experimental
uncertainties, for those maxima and minima that are well separated from the Rabi oscillations
excited by the second pulse. The agreement with the theoretical values, 0.17, 0.65, 1.24, 1.74
and 2.24, is fair, except for the first two extrema. This aspect will be commented on in the
conclusion. Here we note that, as the explored range of T0 is from 5 to 50 µs, the measured
distance between the maximum and the minimum nearest to the echo centre varies from 2.5
to 25 µs, well above the response time of our detection system.

We investigated the decay of the SNE signal both as a function of the interpulse distance τ

and of the first pulse duration τ1, paying particular attention to the power dependence of both
decay kinetics.

In a first set of experiments the duration τ1 of the preparative pulse and the power level
were kept fixed and the echo amplitude Vm was measured as a function of τ . The measurements
were repeated for various values of χ/2π , ranging from 75 to 208 kHz. The results are reported
in figure 4. As shown, the decay curves are not single exponentials and occur in a timescale of
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Figure 4. Decay of the SNE signal on varying the interpulse distance τ , at various values (indicated
in the figure) of the Rabi frequency χ . Symbols are experimental values of SNE intensity, measured
as described in the text. Lines are only guides for eyes. The curves are shifted vertically to optimize
the visibility.

a few milliseconds, much shorter than the relaxation time T1 (∼1.2 s). It is worth noting that
the time shape of the SNE signal does not change on varying τ , so that each curve in figure 4
reproduces the decrease of SNE at any time. On varying χ , the decay properties change, in
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Figure 5. Decay of the SNE amplitude Vm on varying the duration τ1 of the first (exciting) pulse, for
three values of the Rabi frequency, indicated in the figure. The interpulse distance is τ = 150 µs.
The dashed lines are the exponential laws that best fit the experimental points and are used to
measure �E . The full line represents the decay curve expected on the basis of the Bloch equation.

the sense that the decay becomes faster on decreasing χ . We recall that the decay of Vm as a
function of τ is caused by the progressive smearing out of the spectral pattern of the population
difference established by the preparative pulse (figure 1). So, the circumstance that this decay
rate depends on χ suggests that the smearing rate depends on the particular distribution of
w(�, τ1). This aspect will be discussed in the next section.

In a second set of experiments the interpulse distance τ and the Rabi frequency χ were
kept fixed and we measured the echo amplitude Vm as a function of the first pulse duration
τ1. The echo amplitude decreases on increasing τ1 because of the irreversible coherence loss
mechanisms effective during both pulses for a total time span 2τ1. We measured Vm as a
function of τ1 at various values of the Rabi frequency χ/2π , ranging from 30 to 200 kHz.
The experimental results are reported in figure 5 for three representative values of the Rabi
frequency χ/2π : 50, 100 and 200 kHz. As the time shape of |M⊥(t)|2 changes on varying
τ1, Vm was measured using the procedure described above and involving the extrema nearest
to the echo centre. The results reported in figure 5 were taken using an interpulse distance
τ = 150 µs; however, these decay curves did not change on varying τ , apart from obvious
scale factors.

We note in figure 5 that, for each value of χ , the experimental data are well described by
a single exponential decay, [Vm ∝ exp(−�Eτ1)] with a power-dependent rate �E . The values
of �E were determined by a best fit procedure and are reported in figure 6 as a function of the
driving field intensity, both in frequency units. As shown, the power dependence of �E is well
described by a simple linear law �E = α + βχ . By fitting we get α/2π = (2.0 ± 0.4) kHz and
β = (2.6 ± 0.4) × 10−2. We note that the best fit value of α = (1.3 ± 0.2) × 104 s−1, i.e. the
low-power limit of �E , is compatible with the Bloch value 1/T2. The relationship between
the power dependence of �E ant that of the TN decay �T N is examined in the next section.
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Figure 6. Dependence of the measured decay rate �E on the Rabi frequency χ . The full line is
the linear best fit to the experimental points. The intercept, (2.0 ± 0.4) kHz, is consistent with the
value �BE = (T2)

−1 expected in the Bloch limit. The best fit slope is β = (2.6 ± 0.4) × 10−2.
The inset reports the experimental χ -dependence of the TN decay in the same sample (data taken
from [9]).

4. Discussion

Firstly, we comment on the effect of varying the interpulse distance τ on the SNE amplitude.
In our experimental conditions (τ 	 T0) the coherences induced during the preparative stage
do not contribute to the SNE effect, which is caused mainly by the spectral pattern w(�, τ1)

established at the end of the preparative pulse. According to the Bloch equations, this pattern
tends to disappear during the interpulse distance because of longitudinal relaxation with the
rate T −1

1 (≈1 s−1 in our system). This prediction is in disagreement with our experimental
results Vm(τ ) (figure 4) in many respects: the decay is not a single exponential, the rate is
much faster and it is also power dependent, as it decreases on increasing the power level, at
least in the investigated range of χ . The SD may be the origin of so fast a decay. SD effects
were not taken into account in the theoretical treatment outlined in section 2, where the spin
packets were assumed to evolve in time, independently from each other. This approximation
may be no longer valid in a timescale of the order of milliseconds. In fact the slow migration
of the excitations over the whole resonance line may affect the persistence of the population
spectral pattern stored during the first pulse. The SD process, usually faster than spin–lattice
relaxation, may be the dominant cause of SNE decay at this timescale. In this regard we note
that the excitation by the first pulse is spectrally selective in two aspects. On the one hand it
involves only a narrow part of the resonance line (with a width of the order of χ , much less than
the inhomogeneous width σ ). This situation is usually described in terms of A-type (echo-
active) spins and B-type (the others) spins [15, 40–42]. The dipolar interaction A–B drags spin
excitations away from the line centre and contributes to the decay of the echo. On increasing
χ , the number of A-type spins increases with respect to B-type spins; this circumstance may
account for the slower decay of the echo at high χ , which has been experimentally observed.
On the other hand, the first pulse excitation is spectrally selective also within the A-type spin
group. In fact it establishes a comb pattern (figure 1) within the central part of the line, which is
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the source of the SNE formation. So, one expects that the A–A dipolar interaction may smear
this pattern and yield an additional contribution to the echo decay. The population pattern gets
finer and finer on increasing τ1, with higher spectral gradients of the population difference. So,
this contribution to the decay rate is expected to increase on increasing τ1. On the contrary,
we observed that the experimental curves Vm(τ ) are essentially independent of the value of
τ1. So, our experimental results suggest that the former effect (due to A–B interaction) is
predominant.

Now, we discuss the role played by the irreversible decoherence mechanisms and their
dependence on the field intensity. We recall that according to the Bloch equations the
amplitude of the SNE is expected to decay on increasing τ1 as a single exponential law
Vm ∝ exp(−�E B τ1) with the rate �E B = 1/T2v . Contrary to this prediction, we found
that the decay rate �E is higher than the free decoherence rate and that it increases linearly
with the field intensity, expressed as Rabi frequency (figure 6). We recall that, according
to equation (10), the χ-dependence of �E images the power dependence of the out-of-phase
decoherence time T2v . This anomalous (non-Bloch) χ-dependence of �E is reminiscent of the
non-Bloch decay of the TN regime, already observed in the same system under single pulse
excitation [8, 9]. In those experiments, the decay rate �T N of TN was found to tend to the
Bloch value (2T2)

−1 in the low-power limit and to increase linearly with χ . The experiments
reported here show that the decay rate �E of the SNE follows a qualitatively similar behaviour,
confirming that both coherent regimes manifest the same field dependence of the irreversible
coherence mechanisms, not accounted for by the Bloch model.

For the sake of comparison we report, in the inset of figure 6, the experimental χ-
dependence of the �T N as measured in the same sample and well fitted by the linear law
�T N = α′ + β ′χ with α′ ≈ α/2 and β ′ = (10.6 ± 0.5) × 10−2. This value of β ′ may be
compared with the value of β = (2.6 ± 0.4) × 10−2 inferred from SNE experiments. Even if
the power dependence of decay rates is similar for the two regimes, the slopes are different, in
the sense that the χ-sensitivity of �E seems to be less than �T N .

A qualitative explanation for this difference may be put forward by recalling the origin of
the anomalous decay of the driven coherent regimes. The generic spin Si of the system
experiences a local dipolar field HLi which is the superposition of the dipolar fields Hi j

generated by all the neighbouring spins Sj . In the presence of an intense resonant field,

the spins Sj undergo forced precessions, each at its own Rabi frequency β j =
√

χ2 + �2
j as

caused by the inhomogeneous spreading of the detuning �. The local field HLi(t) at the site Si

is the superposition of many contributions Hi j(t) each one modulated at a different frequency
so that it appears noisy, with both in-phase and out-of-phase components. According to theory
by Shakhmuratov et al [11], this modification of the dipolar field induced by the resonant
radiation causes the linear dependence of the rate �T N on χ . Obviously, the same mechanism
is effective also during the second refocusing pulse. However, in TN experiments the field-
modified dipolar interaction involves all the spins spectrally located in a narrow band of width
χ around the excitation point. On the other hand, in SNE experiments this narrow band is
strongly modulated by the comb pattern (figure 1) governed mainly by the first pulse duration
τ1. So, only a fraction of the spins are now involved in the echo formation and in the field
modification of the dipolar interaction. This circumstance may lessen the χ-sensitivity of the
decay rate �E with respect to �T N .

5. Conclusion

In conclusion, we have reported experimental results on the SNE in ESR systems. The
timing and the shape of the echo pattern appear in agreement with the theory by Szabo and
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Shakhmuratov [30, 31]. We have investigated the decay properties of the echo and found that the
decay is strongly affected by the SD mechanism; our results are consistent with the prevalence
of the A–B interaction over the A–A. Moreover, we studied the effect of the coherence loss
(out-of-phase decoherence) during the exciting and the refocusing pulses. Our results evidence
a non-Bloch behaviour similar to that observed in other coherent regimes, which we ascribe
to the field-induced modification of the dipolar field. However, our results have evidenced
that the coherence loss mechanisms effective in different coherent regimes feature a different
sensitivity to the driving field intensity. We tentatively ascribed this difference to the different
number of involved spins.

A final remark concerns the time distance between the maximum and the minimum
nearest to the echo centre. As noted previously, the experimental value of this distance
is somewhat longer than the theoretical one. Admittedly, we have not at the moment a
satisfactory explanation of this disagreement. Even if this aspect seems to play no role in
the decay properties considered in the present paper, it might be relevant by itself for a
thorough understanding of the spin dynamics during the SNE generation. In this regard,
the experimental study of the SNE echo excited by two pulses having different χ may yield
additional information. Experimental and theoretical work is in progress in this direction.
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